and Faculté des sciences Aix Marseille Université

Master Physique fondamentale et applications Optical components

Informations

Composante : Faculté des Sciences

Responsables

Frank WAGNER Guillaume DEMESY Frederic LEMARQUIS Fabien LEMARCHAND

Langue(s) d'enseignement

Anglais

Contenu

The students from different backgrounds elaborate their knowledge on the physical principles of optoelectronic devices. Applications in sensing, lightning, nanotechnology, energy harvesting.

The teaching unit is composed of 3 completely independent parts: Optoelectronics, crystal based components, thin film optical coatings.

Part 1: Crystal based optical components

Anisotropic optics in biaxial crystal, finding the linearly polarized waves that can propagate in a given arbitrary direction (index and polarization direction) Applications is polarizers, waveplates, pockels cells and other optical components

Part 2: Semiconductor based optical components

- Electronic band theory of semi-conductors : mono-dimensional toy model, electronic band structure, effective mass : origin of holes, extension in 3D and application to common semi-conductors, transitions in direct and indirect bandgap semi-conductors

 Light Emitting Diodes : From the Electronic band structure to the space band diagram, Classical homojunction, heterojunction
Devices : Structure of a LED, fabrication, extraction and light

management, efficiencies, emission spectrum, applications

Part 3: Thin film optical coatings

- Thin film theory (propagation and interferences inside a multilayer structure; Calculation techniques for the reflectance and transmittance factors of a coating;

- Thin film design (classical multilayer stuctures used for dielectric mirrors, antireflection coatings, edge filters, bandpass filters);

- Manufacturing and characterization of thin film filters (theoretical elements and experimental demonstration).

Compétences à acquérir

The students know

- · how what represents an bandstructure and how it can be obtained
- what is a direct / indirect bandgap materials
- understand the applications of each
- what an LED and a CMOS sensor are and how they are build
- · what the efficiency of a LED and a sensor is
- how to determine the refractive index and the polarization of the linearly polarized eigenmodes propagating in a crystal
- the different types of polarizers
- how waveplates, electro-optic modulators (pockels cells), liquid-crystal light modulators, acousto-optic modulators work.
- what happens inside a multilayer structure.
- how to design a thin film stack to obtain a given reflectance or transmittance spectral profile.
- how thin film filters are manufactured.

Modalités d'organisation

Final written examination consisting of several problems and knowledge/comprehension questions on the course content

Bibliographie, lectures recommandées

Pierret, Advanced semiconductor fundamentals, 1987 Parker, Physics of optoelectronics, CRC Press, 2005 Chuang, Physics of optoelectronic devices, 1995

Pré-requis obligatoires

Basic knowledge on electrodynamics and solid state physics

VOLUME HORAIRE

- Volume total: 32 heures
- Cours magistraux: 32 heures

Codes Apogée

• SPFCU46J [ELP]

Pour plus d'informations

Aller sur le site de l'offre de formation...

Dernière modification le 18/06/2024